78,865 research outputs found

    Model inspired by population genetics to study fragmentation of brittle plates

    Full text link
    We use a model whose rules were inspired by population genetics, the random capability growth model, to describe the statistical details observed in experiments of fragmentation of brittle platelike objects, and in particular the existence of (i) composite scaling laws, (ii) small critical exponents \tau associated with the power-law fragment-size distribution, and (iii) the typical pattern of cracks. The proposed computer simulations do not require numerical solutions of the Newton's equations of motion, nor several additional assumptions normally used in discrete element models. The model is also able to predict some physical aspects which could be tested in new experiments of fragmentation of brittle systems.Comment: We have modified the text in order to make the description of the model more clear. One Figure (Figure 1) was introduced showing the steps of the dynamics of colonization. Twelve references were adde

    Susceptibility of a two-level atom near an isotropic photonic band edge: transparency and band edge profile reconstruction

    Full text link
    We discuss the necessary conditions for a two-level system in the presence of an isotropic band edge to be transparent to a probe laser field. The two-level atom is transparent whenever it is coupled to a reservoir constituted of two parts - a flat and a non-flat density of modes representing a PBG structure. A proposal on the reconstruction of the band edge profile from the experimentally measured susceptibility is also presented.Comment: 15 pages, 3 figure

    Characterization and quantification of symmetric Gaussian state entanglement through a local classicality criterion

    Full text link
    A necessary and sufficient condition for characterization and quantification of entanglement of any bipartite Gaussian state belonging to a special symmetry class is given in terms of classicality measures of one-party states. For Gaussian states whose local covariance matrices have equal determinants it is shown that separability of a two-party state and classicality of one party state are completely equivalent to each other under a nonlocal operation, allowing entanglement features to be understood in terms of any available classicality measure.Comment: 5 pages, 1 figure. Replaced with final published versio

    Space-time Torsion and Neutrino Oscillations in Vacuum

    Full text link
    The objective of this study is to verify the consistency of the prescription of alternative minimum coupling (connection) proposed by the Teleparallel Equivalent to General Relativity (TEGR) for the Dirac equation. With this aim, we studied the problem of neutrino oscillations in Weitzenbock space-time in the Schwarzschild metric. In particular, we calculate the phase dynamics of neutrinos. The relation of spin of the neutrino with the space-time torsion is clarified through the determination of the phase differences between spin eigenstates of the neutrinos.Comment: 07 pages, no figure
    corecore